
Titans: Learning to Memorize at Test Time
Ali Behrouz, Peilin Zhong, and Vahab Mirrokni

Google Research

My Two Cents, Tim Büchner
04.03.2025

Abstract

Recurrent models compress data and attention mechanisms capture
dependencies.
Attention models face quadratic complexity limits.
New neural long-term memory enhances attention with history.
Titans combine short-term attention and long-term memory (hybrid models)

Key Questions

Q1: What constitutes a good memory structure?
Q2: What is an effective memory update mechanism?
Q3: What is an optimal memory retrieval process?
Q4: How to design an architecture with interconnected memory modules?
Q5: Is a deep memory module needed for long-term storage?

Contributions

Neural Memory Module: A novel deep memory mechanism that learns via
violating expectations .
Memory Update and Retrieval: Improved strategies for storing, forgetting,
and retrieving past information.
Titans Architecture: A family of models integrating short-term and long-term
memory (MAC, MAG, MAL)
Scalability: Titans can process over 2M tokens, outperforming existing
models.

Preliminaries

 is the input (most often tokens)
 is a neural network (neural memory module)(meta-model)

 are query, key, and value of the attention mechanism
 is the attention mask

 is the -th segment of a segmented input

Preliminaries (1/3): Attention Mechanisms

Transformers use self-attention to model dependencies.
Computational complexity grows quadratically with sequence length.
Linear Transformers use kernel-based approximations for efficiency.
Useful for efficient inference for linear attention on their neural memory
module:

Preliminaries (2/3): Recurrent Models

RNNs and LSTMs compress information into hidden states.
In general, the following operations are needed:

State-space models extend RNNs for long-term dependencies.
Modern approaches like Mamba improve efficiency and scalability.

Preliminaries (3/3): Memory Perspective

Memory systems in deep learning:
short-term (attention) vs. long-term (recurrent).

Key challenge: Storing and retrieving long-range dependencies efficiently.

Titans aim to unify these concepts for better scalability and effectiveness

We will now take a look at their ideas!

Memorize at Test Time

Long-term Memory (1/4): Motivation

Humans remember surprising or significant events better
More like if our expectations are not met

Traditional deep learning models struggle with long-term dependencies.
Key idea: A neural memory module that learns to store and retrieve relevant
past information.

Long-term Memory (2/4): Surprise-based Learning

Define a momentary surprise as the gradient of loss with respect to input:

Use past surprise to influence memory updates:

Acts like gradient descent with momentum, ensuring better memory stability.
 (information control factor) and (decay factor) should be data-dependent

 ignore last event; use last event fully

Long-term Memory (2/4): Surprise-based Learning
Objective

Surprise metric is based on a loss function , which is that the objective
that our memory is learning to act as it at test time
Build a associative memory store past data as (key, value) pairs.
For a given , transform into and :

The memory should learn the following association between key and value:

Inner-loop and Outer-loop training!

Long-term Memory (3/4): Forgetting Mechanism

Key challenge: Managing limited memory capacity.

Adaptive forgetting mechanism:

 is data-dependent (not really written here in the text...)

Controls how much past information should be retained.

Similar to modern recurrent models (e.g., Mamba, DeltaNet).

Use simple MLP as model architecture more research possible

Long-term Memory (4/4): Memory Retrieval

Use stored knowledge effectively during inference.
Retrieve memory by querying stored keys:

Memory retrieves useful historical information dynamically.
Enables Titans to handle long-term dependencies efficiently.

Persistent Memory (1/3): Concept

Long-term memory depends on context, but some knowledge should be
static.
Persistent memory consists of learnable, input-independent parameters.
Stores task-specific knowledge that should not change at test time.

Persistent Memory (2/3): Integration

Via persistent learnable parameters, concatenated with the input sequence:

Allows the model to incorporate static knowledge into processing
input-independent memory

Persistent Memory (3/3): Benefits

Acts as a task-related knowledge base, improving generalization.
Mitigates bias in causal attention, preventing over-reliance on early tokens.
Enhances in-context learning by providing a stable foundation for
adaptation.

Incorporate Memory

Memory as a Context (1/3)

Memory is treated as additional context for attention in an existing model.
Chunk into segments, treat as current context, previous as history
Memory retrieval:

Updated input sequence:

Update the memory:

Memory as a Context (2/3)

Memory as a Context (3/3)

Gated Memory (1/3)

Use the to directly update the memory, and use sliding window attention
No segmentation!

Do the following updates:

 can be any non-linear gating mechanism
they normalize and (via learnable vectors), and use

Gated Memory (2/3)

Gated Memory (3/3)

Memory as a Layer (1/2)

Memory module acts as a separate model layer.
Do the following updates:

No complementary data processing during attention mechanism

Memory as a Layer (2/2)

Implementation Details

Use residual connections in every block
Use activations function for query, key, and value
Normalize query and key using -norm
1D depthwise-separable convolutions after query, key, value projections

Theorem 4.1.

Contrary to Transformers, diagonal linear recurrent models, and DeltaNet, all
of which are limited to (Merrill, Petty, and Sabharwal 2024), Titans are
capable of solving problems beyond , meaning that Titans are
theoretically more expressive than Transformers and most modern linear
recurrent models in state tracking tasks.

Experiments
hybrid models are (recurrent + attention) network architectures

Experiments: Language Modeling

Evaluated on WikiText and LMB datasets.
Metric: Perplexity (lower is better).
Best model: Titans generally outperform all others, hybrid a bit better
Outperforms Mamba, Transformer++, and DeltaNet.

Experiments: Needle in a Haystack

Evaluated on NIAH benchmark.
Metric: Retrieval accuracy at long sequence lengths (2K, 4K, 8K, 16K)
Best model: Titans (MAC) with acc = 98.4% at 16K tokens.
Demonstrates effective long-term retrieval compared to baselines.

Outperform clearly at 16K S-NIAH-W

Experiments: BABILong Benchmark

Not only a single information, but several important factors hidden
used for extremly long documents

Few-shot and fine-tuning settings compared

Experiments: Effect of Deep Memory

Compare memory module (MLP) layer amount and parameter size
170M, 360M, 760M

Use Pile subset for training

Experiments: Time Series Forecasting

Benchmarked on ETT, ECL, Traffic, and Weather datasets.
Metric: Mean Squared Error (lower is better).
Best model: Neural Memory Module with MSE = 0.162 (ECL dataset).
Outperforms Simba, PatchTST, and TiDE.

Experiments (5/6): DNA Modeling

Evaluated on GenomicsBenchmarks tasks.
Metric: Top-1 Classification Accuracy (higher is better).
Best model: Neural Memory Module with acc = 96.6% (OCR task).
Competitive with HyenaDNA and Transformer++.

Experiments (6/6): Efficiency & Scaling

Compared training throughput and model scaling.
Best variant: Titans (MAL) achieves best trade-off between speed and
accuracy.
Scales up to 2M+ context window with better efficiency than Mamba2 and
DeltaNet.

Ablation Study

Test Titans with and without certain parts
Compare among three tasks with different

Strengths & Unique Selling Points
 Scales beyond 2M tokens
 Outperforms Transformers in recall-intensive tasks
 Surprise-based memory learning for better generalization
 Adaptive forgetting prevents memory overflow
 Parallelizable training for efficiency

Criticisms & Limitations & Open Questions
 High complexity - Multiple interacting components
 Computational overheads - Needs optimization for real-world use
 Limited multimodal testing - Lacks evaluation on vision + text
 Privacy concerns - Memorization at test time could risk data leakage
 Reproducibility - Many hyperparameters unknown until code is public
 Missing Information - How large is the persistent memory?
 Experiment Design - How often were the experiments repeated (no std. given)

Conclusion
 Titans introduce a scalable long-term memory framework
 Outperforms Transformers and recurrent models in long-context tasks
 Offers better memory efficiency with surprise-based learning
 Future work: Efficiency improvements, multimodal expansion

Thank You!
 Questions? Discussions?

